Authenticated Key Exchange (in TLS)

Kenny Paterson

Information Security Group E,%I%WAY

@kennyog ; www.isg.rhul.ac.uk/~kp UNIVERSITY

Overview

* Overview of TLS Key Exchange

* Attacks onTLS Handshake Protocol
* RSAencryptioninTLS
* TLS Renegotiation and Triple Handshake Attack
* Cross-protocol attacks including FREAK and LOGJAM

* Security proofs for TLS

* The future of key exchange in TLS

TLS Overview

SSL = Secure Sockets Layer.
Developed by Netscape in mid 1990s.
SSLva broken at birth.
SSLv2 flawed in several ways, now IETF-deprecated (RFC 6176).
SSLv3 now considered broken (POODLE + RC4 attacks), but still widely supported.

TLS =Transport Layer Security.
|IETF-standardised version of SSL.
TLS 1.0in RFC 2246 (1999).
TLS 1.1in RFC 4346 (2006).
TLS 1.2 in RFC 5246 (2008).

TLS 1.3 currently in development in IETF.

Importance of TLS

Originally designed for secure e-commerce, now used much more widely.
Retail customer access to online banking facilities.
Access to gmail, facebook, Yahoo, etc.
Mobile applications, including banking apps.

Payment infrastructures.

TLS has become the de facto secure protocol of choice.
Used by hundreds of millions of people and devices every day.

So we need to analyse it, in order to find and remove flaws.

TLS Protocol Architecture

Record Protocol

TCP

TLS Record Protocol

TLS Record Protocol provides:
Data origin authentication, integrity.
Confidentiality.
Anti-replay using sequence numbers.
Optional compression.

For streams of application layer messages.

Achieved via stateful Authenticated Encryption
MAC-Encode-Encrypt using (CBC-mode or RC4) + HMAC up to TLS 1.1.

Option for “proper” AE in TLS 1.2, typically AES-GCM, also now ChaCha2o0+ Poly1305

TLS Record Protocol subject to many attacks and analyses

Padding oracles, BEAST, CRIME, Lucky 13, RCg4, short MAC,...

TLS Handshake Protocol — Goals

Establishes keys (and IVs) needed by the Record Protocol.

Via establishment of the TLS master secret and subsequent key derivation.

Provides authentication of server (usually) and client (rarely)
Using public key cryptography supported by digital certificates.

Or pre-shared key (less commonly).

Protects negotiation of all cryptographic parameters.
SSL/TLS version number.
Encryption and hash algorithms.
Authentication and key establishment methods.

To prevent version rollback and ciphersuite downgrade attacks.

TLS Handshake Protocol — Key Establishment

TLS supports several key establishment mechanismes.

Method used is negotiated during the Handshake Protocol itself.

Client sends list of ciphersuites it supports in ClientHello; server selects one and tells client in
ServerHello.

e.g. TLS_RSA WITH AES 256 CBC_SHA256
e.g. TLS_ECDHE RSA WITH RC4 128 SHA

https://www.thesprawl.org/research/tls-and-ssl-cipher-suites/

Common choice is RSA encryption.
Server sends RSA public key and certificate chain after ServerHello.
Client chooses pre_master secret, encrypts using public RSA key of server, sends to server.

RSA encryption is based on PKCS#1 vi.5 padding method.

TLS Handshake Protocol — RSA-based Key

Establishment (Simplified)

Client Server

ClientHello (TLS RSA WITH AES 256 CBC_SHA256)
>

ServerHello, Cert, ServerHelloDone

<

1.Check ServerCert

2.Extract PubK from ServerCert
3.Select random pre master secret
4.Compute Enc,,x(pre master secret)

ClientKeyExchange: Enc,,x(pre master secret)
>

Decrypt to find

n pre master secret

TLS Handshake Protocol — Key Establishment

Static Diffie-Hellman

Server certificate contains DH parameters (group, generator g) and static DH value g~.
Client chooses y, computes ¢g” and sends to server.

pre master secret =gVY.

Ephemeral Diffie-Hellman

Server and Client exchange fresh Diffie-Hellman components g%, ¢”in a group chosen by server.
Server values (and nonces) signed to provide server authentication.

Typically mod p group or elliptic curve group.

Anonymous Diffie-Hellman

Each side sends Diffie-Hellman values in group chosen by server, but no authentication of these values.

Vulnerable to man-in-middle attacks.

TLS Handshake Protocol — Ephemeral DH-based Key

Establishment (Simplified)

Client Server

ClientHello (TLS DHE RSA WITH RC4 128 SHA)
>

ServerHello, Cert, ServerKeyExchange, ServerHelloDone
<

l1.Check Cert

2 .Extract PubK from ServerCert

3.Use PubK to check server signature
4 .Choose y, compute g'y, (g°x)"y

ClientKeyExchange: gy

>

pre master secret:
(97y)"x

TLS Handshake Protocol — Key Establishment Notes

Typical ClientHello offers many different ciphersuites, choice of which to
use is made by server.

ClientHello also offers SSL/TLS version number; server replies with its
choice.

Semantics: client: | support up to version x; server: | will use version y < x.
Legacy servers do not implement this correctly, and fail if they don’t support version x.

Typical client behaviour: try again with lower version in a fresh handshake, with no
memory of previous offer(s) carried over.

Security consequence: an active MITM can force client/server to roll back to lowest
SSL/TLS version they are both willing to use!

POODLE attack exploits this to roll back to SSL3 and perform Moeller attack on SSLv3
padding.

TLS Handshake Protocol — Key Establishment Notes

ClientHelloand ServerHello contain 32-byte nonces.

Signed by server in DH-based ciphersuites, involved in key derivation (next slide).

An attacker who knows the RSA private key can passively eavesdrop on all
RSA-based sessions!

An attacker who can predict client’s choice of pms or DH private value can
passively eavesdrop on all sessions!

And nonces may already leak information about state of client or server PRNG.

See Checkoway et al. (USENIX Security 2014) for more.

TLS Key Derivation

pre master secret

Nonces
|

v

TLS 1.2
PRE

v

master_secret

v v

TLS 1.2
PRE

v

key block

TLS Key Derivation

Keys used by MAC and encryption algorithms in the Record
Protocol are derived from pms:

Derive ms from pms using TLS Pseudo-Random Function (PRF).

Default PRF for TLS1.2 is built by iterating HMAC-SHA256 in a
specified way

Derive key_block from ms and client/server nonces exchanged
during Handshake Protocol.

Again using the TLS PRF in TLS1.2.

Split up key_block into MAC keys, encryption keys and IVs for use
in Record Protocol as needed.

NB: neither client nor server identity is not involved in key
derivation.

TLS Handshake Protocol — RSA-based Authentication?

Client Server

ClientHello (TLS RSA WITH AES 256 CBC_SHA256)
>

ServerHello, Cert, ServerHelloDone
<

l.Check ServerCert

2.Extract PubK from ServerCert
3.Select random pms

4 .Compute Encgy, x(pms)

ClientKeyExchange: Enc,,x(pms)
>

Decrypt to find pms

TLS Handshake Protocol — RSA-based Authentication

Client Server

ClientHello (TLS RSA WITH AES 256 CBC_SHA256)
>

ServerHello, Cert, ServerHelloDone

<
ClientKeyExchange
> | 1. Decrypt to find pms
. Derive ms
3. Compute
ServerFinished ServerFinished =
< PRF (ms,transcript)

1. Derive ms

2. Compute
ServerFinished’ =
PRF (ms,transcript)

3. Compare to received version

TLS Handshake Protocol — Authentication for

Ephemeral DH-based Key Establishment

Client Server

ClientHello (TLS DHE RSA WITH RC4 128 SHA)
>

ServerHello, Cert, ServerKeyExchange, ServerHelloDone
<

1.Check Cert

2.Extract PubK from ServerCert

3.Use PubK to check server signature_
4.Choose y, compute gy, (g”"x)\y

ClientKey

ster secret:

ServerFinished (gPy)™x

TLS Handshake Protocol — Authentication

TLS supports several different entity authentication
mechanisms for clients and servers.

Method used is negotiated along with key exchange method
during the Handshake Protocol itself.

RSA: Ability of server to decrypt pms using its private key,
derive ms from pms and then generate correct PRF value in
ServerFinished message.

DHE/ECDHE: Ability of server to sign ClientNonce using its
private key.

TLS Handshake Protocol-ClientFinished

Client Server

ClientHello

ServerHello, Cert, [ServerKeyExchange,] ServerHelloDone
<

1. Derive ms

2. Compute
ClientFinished =
PRF (ms,transcript)

ClientKeyExchange, | ClientFinished
>

1. Derive ms

2. Compute
ClientFinished’ =
PRF(ms,transcript)

ServerFinished 3. Compare to received version

TLS Handshake Protocol - Finished Messages

TLS Finished messages enable each side to check that both views
of the Handshake Protocol are the same.

Computed as PRF (ms, transcript) where transcript =

sender’s view of all protocol messages sent and received up to this
point.

Compared by recipient to expected value; protocol aborts if mismatch
is observed.

Designed to prevent version rollback and ciphersuite downgrade
attacks.

Ineffective if attacker can compute ms during protocol run.

TLS Handshake Protocol - ChangeCipherSpec

Client Server

ClientHello

ServerHello, Cert, [ServerKeyExchange,] ServerHelloDone
<

ClientKeyExchange, CCs, _
>

TLS Handshake Protocol — CCS Messages

ChangeCipherSpec messages enable parties to inform each
other that they are switching to the recently agreed keys in the
Record Protocol.

Here, this means that all subsequent messages are protected
using the agreed ciphersuite (e.g. AES 256 CBC_SHA256).

Not part of the Handshake Protocol, so not included in
transcripts.

TLS Handshake Protocol — Client Authentication

Client

ServerHello,

[Cert,]

Server

ClientHello

Cert, [ServerKeyExchange, |[CertificateRequest,

ServerHelloDone

<

ClientKeyExchange, HCertificateVerify,] CCs,

>

TLS Handshake Protocol — Client Authentication

Client authentication is optional and rarely used in the web
setting.

Server requests client’s certificate in its He11o message.

Client responds with:
Cert: client’s certificate (chain).

CertificateVerify:signature on protocol transcript to this
point.

TLS Handshake Protocol — Additional Features

The TLS Handshake Protocol also supports renegotiation and session
resumption.

Renegotiation allows re-keying and change of ciphersuite during a session.

For example, to force strong client-side authentication before access to a particular
resource on the server is allowed.

Initiated by client sending ClientHello or server sending
ServerHelloRequest.

Followed by full run of Handshake Protocol.

Over existing Record Protocol.

TLS Handshake Protocol — Session Resumption

Session resumption allows authentication and shared secrets to
be reused across multiple, parallel connections in a single
session.

E.g., allows fetching multiple resources from same website
without re-doing full, expensive Handshake Protocol.

Client and Server quote existing SessionID and exchange
fresh nonces.

TLS Handshake Protocol — Session Resumption

Client Server
ClientHello (SessionID)
>
N, Ng ms
———wv
PRF
v
key block
ServerHello (SessionID), CCS, _
<
No, Ng ms
——wv
PRF
v

TLS Sessions and Connections

Session concept:
Sessions are created by the Handshake Protocol.

Session state defined by session ID and set of cryptographic parameters (encryption
and hash algorithm, master secret, certificates) negotiated in Handshake Protocol.

Each session can carry multiple parallel connections.

Connection concept:

Keys for multiple connections are derived from a single ms created during one run
of the full Handshake Protocol.

Session resumption Handshake Protocol runs exchange new nonces.

These nonces are combined with existing ms to derive keys for each new
connection.

Avoids repeated use of expensive Handshake Protocol.

TLS Extensions

Many extensions to TLS exist.

Allows extended capabilities and security features.

Examples:
Renegotiation Indicator Extension (RIE), RFC 5746.
Application layer protocol negotiation (ALPN), RFC 7301.
Authorization Extension, RFC 5878.

Server Name Indication, Maximum Fragment Length Negotiation,
Truncated HMAC, etc, RFC 6066.

TLS Handshake Protocol Complexity

The TLS Handshake Protocol is very complex:
The protocol is “self-negotiating”.
There are many options and extensions.

There are interactions with other protocols (CCS, Record Protocol,
Alert Protocol).

There is no clear state machine or APl in the specification.

What could possibly go wrong?

Di— @ -~ @ @ -~ @ @
SRS

{Jo—> <{Jot—> <{Jef—> <@
SoDC

IR OIS INT..®

/.\:: /\

A Selection of Attacks on the
Handshake Protocol

NN

v AN

©

R
NLON

‘u >

LS

TLS Handshake Protocol Attacks

Up until 2009, the TLS Handshake Protocol survived relatively
unscathed.

Notable exception: Bleichenbacher’s attack on RSA encryption
used in TLS (Crypto 1998).

Exploits fact that RSA encryption scheme used (PKCS#1 vi.5) is not
CCA secure.

Recovers master secret for a target session using roughly 22°
interactions with server.

Attack was addressed in TLS 1.0 via a specific countermeasure rather
than change of scheme.

RSA Encryption in TLS

PKCS documents are a series of “standards” published by RSA.

PKCS#1 defines how to use RSA for encryption.
Version 1.5: November 1993, also RFC 2313.
Version 2.0: October 1998, also RFC 2427.
Version 2.1: February 2003, also RFC 3447.

PKCS#1 version 1.5 is used in the TLS Handshake Protocol.

PKCS#1 vi.5, block type 2

00| 02 Padding block 00 48-byte pms

me mod N

* Plaintext must begin with “oo 02" bytes.
* Padding block consists of at least 8 non-zero bytes.
* Should be terminated by “"00” byte.

* Last 48 bytes are used as pms.

. Additional complication: most significant two bytes are set to client TLS version.

PKCS#1 vi.5, block type 2

00| 02 Padding block 00 48-byte pms

me mod N

Think about sanity checking after decryption:

* Checkfor“0002"?

* Check for at least 8 non-zero padding bytes or just some non-zero bytes?
* Check foraoo-byte? Or just extract last 48 bytes?

* Demand oo-byte to be in exactly the right position?

* Check forTLS version number?

Bleichenbacher’s Attack

* Exact decryption processing is not specified.

 Different implementations exhibit different behaviours.

* Suppose that we have an oracle that on input ¢ outputs
whether x := ¢ mod N begins with byte pattern “oo 02".

* If oracle output is “yes”, then we have an inequality:
2B <xmod N < 3B

where B = 282 and k is the number of bytes in modulus N.

Bleichenbacher’s Attack

* Suppose attacker records c*, the RSA ciphertext encrypting
the unknown pms for a target session.

* Attacker calls the 00 02" oracle on many, carefully selected
inputs of the form séc* mod N.

» Each “yes” output gives an inequality of the form:
2B < s x pms mod N < 3B
where s is known.

* By analysing responses from the oracle, the attacker can
eventually reconstruct pms.

* Roughly 22°oracle queries are needed.

Bleichenbacher’s Attack

In the TLS context:

The required oracle is realised using error messages arising from
server processing of attacker-generated ClientKeyExchange
messages.

Countermeasures?

* Switch to using CCA-secure variant of RSA encryption, e.qg.
RSA-OAEP (cannot create “related” ciphertexts that are
valid).

* Add protocol-specific countermeasures.

Bleichenbacher and TLS1.0 (1999)

TLS 1.0 was published in RFC 2246, Jan 1999, shortly after
adoption of RSA-OAEP into PKCS#1av2.0.

TLS 1.0 still uses PKCS#ava.5, despite Bleichenbacher’s attack:

The best way to avoid vulnerability to this attack is to treat incorrectly
formatted messages in a manner indistinguishable from correctly
formatted RSA blocks. Thus, when it receives an incorrectly formatted
RSA block, a server should generate a random 48-byte value and proceed
using it as the premaster secret. Thus, the server will act identically
whether the received RSA block is correctly encoded or not.

TLS 1.2, RFC 4346 (2006)

[PKCS1B] defines a newer version of PKCS#1 encoding that is more
secure against the Bleichenbacher attack. However, for maximal
compatibility withTLS 1.0, TLS 1.1 retains the original encoding. No
variants of the Bleichenbacher attack are known to exist provided
that the above recommendations are followed.

Over-optimistic: several implementations still get it wrong, and
there’s now a long literature of Bleichenbacher-style attacks
against RSA implementations (not just in TLS).

Bardou et al. (Crypto 2012), Jager et al. (Esorics 2012), ...

Renegotiation Attack (Ray and Dispensa, Rex, 2009)

attacker-
server initial
handshake

Attacker Data)

client-server
initial
handshake with

(ServerHelloReq

ClientHello

S >

attacker-server
renegotiation

Client Data handshake

Client view: single handshake, sends ClientData.

Server view: two handshakes, receives AttackerData| |ClientData from
authenticated client.

Overall effect: attacker injects AttackerData as if from trusted source.

Renegotiation

* Renegotiation attack due to Ray and Dispensa, also Rex (2009).

* Server treats data as coming from either side of client
authentication as being a single unit from an authenticated source.

* TLS specification does not really say how to handle this situation.
* Flush buffer of received fragments upon renegotiation?
* Signal to application that authentication status has changed?
* Highlights lack of API specification for TLS.

* Attack addressed via Renegotiation Indication Extension (RIE), RFC
5746.

* Include and verify information about previous handshakes in any
renegotiation.

* Could also disable renegotiation on server.

Triple Handshake Attack (Bhargavan et al, IEEE S&P

2014)

* Triple Handshake attack: renegotiation attack rebooted.

* Complex attack leveraging lack of identities in key derivation +
resumption + renegotiation.

* Even first step in the attack (UKS attack) breaks certain
authentication protocols relying on TLS.

» Attack highlights that RIE fix for renegotiation attack is not
robust in the context of the full TLS Handshake Protocol.

* Renegotiation status gets lost across resumptions.

Certificate Processing Bugs

Many problems have been discovered in code for certificate
processing.

Fahl et al. (CCS 2012)

Georgiev et al. (CCS 2012)
GnuTLS bug (CVE-2014-0092)

Apple goto fail (CVE-2014-1266)

Affecting Apple iOS 6.x before 6.1.6 and 7.x before 7.0.6, Apple TV 6.x
before 6.0.2, and Apple OS X 10.9.x before 10.9.2.

Apple goto fail

SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParames,
uint8_t *signature, UInta6 signaturelLen)

OSStatus err;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != o)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) !=
goto fail;

| goto fail;
if ((err = SSLHashSHA1.fina
goto fail;

fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);

return err;

CCS Mishandling Bug (CVE 2014-0224)

OpenSSL implementation of TLS will accept

ChangeCipherSpec message at any pointin
the TLS Handshake.

So MITM attacker can inject it at point of his
choosing.

Result is that TLS key derivation is carried out with
a zero-length master secret.

Leading to predictable session keys.

Cross-ciphersuite Attacks

Recall server signature format in ServerKeyExchange:

sig(nonces, params)

Format of params depends on type of key exchange: mod p DH
parameters or ECDH parameters.

But type of parameters is not itself signed.

Instead, it's inferred by client from the ciphersuite, for which
agreement is only verified via Finished messages.

Cross-ciphersuite Attack (Mavrogiannopoulos et al, CCS

2012)

ClientHello Q ClientHello’
> T >
TLS_DHE_RSA.. TLS_ ECDHE_RSA..

Cert,

ServerKeyExchange

& <€

erverHello’,
Cert,
ServerKeyExchange

*server needs to support
“explicit prime curve”
option, RFC 4492.

Cross-ciphersuite Attack (Mavrogiannopoulos et al, CCS

2012)

* Attackrequires server to support “explicit prime curve” option
(RFC 4492).

* Attackrequires client to accept weak DH parameters (g =0, 1 or
-1).

* Enabling MITM to compute pms and correct ServerFinished
message to complete the handshake.

* Success rate can be boosted by repeatedly sending
ClientHello’ message within TLS timeout on client (tens of
seconds).

» Attack possible because server signature does not cover type of
ciphersuite, nor TLS extensions specifying use of ECC.

FREAK and LOGJAM Attacks

EXPORT ciphersuites:

0x000003 TLS RSA EXPORT WITH RC4 40 MD5
0x000006 TLS RSA EXPORT WITH RC2 CBC_ 40 MD5
0x000008 TLS RSA EXPORT WITH DES40 CBC_SHA
0x00000B TLS DH DSS EXPORT WITH DES40 CBC_SHA
0x00000E TLS DH RSA EXPORT WITH DES40 CBC_SHA
0x000011 TLS DHE DSS EXPORT WITH DES40 CBC SHA
0x000014 TLS DHE RSA EXPORT WITH DES40 CBC SHA
(and more)

* Introduced in the gos in the era of export control.
* Maximum 512-bit RSA keys and 512-bit primes for DH/DHE.

* Repurpose ServerKeyExchange message to transport "ephemeral” RSA/
DH/DHE keys.

* Until recently, still supported by around 25% of servers...

FREAK Attack (Beurdouche et al, IEEE S&P 2015)

ClientHello ClientHello’

>
TLS_RSA EXPORT..

TLS_RSA..

Cert,

ServerKeyExchange

& <€

erverHello’,
Cert,
ServerKeyExchange

FREAK Attack (Beurdouche et al, IEEE S&P 2015)

ClientHello ClientHello’

>

TLS RSA.. TLS RSA EXPORT..

ServerHello,
Cert,
ServerKeyExchange

<€ <€

ServerHello’,

Cert,

ServerKeyExchange

>
ClientKeyExchange;

CCSI

<€

FREAK Attack (Beurdouche et al, IEEE S&P 2015)

Attack relies on buggy clients accepting ServerKeyExchange
containing 512-bit RSA key when no such message was expected.

* Many clients were vulnerable (https://www.smacktls.com/).

* Export RSA keys are meant to be ephemeral, but hard to generate
RSA moduliin practice, so made persistent.

* Cost of factoring 512-bit modulus: approximately $100 on Amazon
ECa.

» Attack arises because of common code paths in implementations,
coupled with state machine failures.

* Exploredin-depth in Berdouche et al paper.

LOGJAM Attack (Adrian et al, 2015)

* LOGJAM = Cross-ciphersuite + FREAK.

* Active attacker changes TLS DHE RSA...to
TLS DHE RSA EXPORT..

* Serverresponds with weak DH parameters signed under its RSA
key.

* Client accepts these (signature does not include ciphersuite
details).

» Attacker solves 512-bit DLP before client times out.

* Attacker can then create correct ServerFinished message to
impersonate server.

 Difficult to perform in practice, but not impossible for three-
letter agency.

* Servers use small numer of common primes p.

* Precomputation allows each 512-bit DLP to be solved in around

90s.

LOGJAM Attack (Adrian et al,

ClientHello’
>
TLS DHE RSA EXPORT.

TLS DHE_RSA..

ServerHello,
Cert
4 ™ '
Attacker ServerKeyExchange
< <€
uses x and .
AV to ServerHello’,
cganme cert,
P ServerKeyExchange
pms

HS >
ClientKeyExchange
(9”y), CCS,

CCS

Attacker solves DLP for g,
g”\x to compute server’s

private value x..

Security Proofs for TLS Handshake Protocol

* Models for analysis of key exchange protocols are fairly mature.
* Beginning with [BRg3].

* Butthey are also quite complex.
* Multiple, interacting parties.
* Multiple sessions at each party.
» Adversary given complete control of the network (“adversary is the network”).

* Adversarial access to various session keys, long-term secrets, ephemeral
values, randomness.

* Forward security?

* Corruption of parties?

* Dishonest long-term key pair generation?
* Modeling of CA/PKI?

* Authentication and key security properties

Security Proofs for TLS Handshake Protocol

Additional barriers to analysis for TLS:

Protocol not designed with provable security in mind.

Protocol version and ciphersuite are negotiated during the protocol itself and verified
later via Finished messages.

Different methods for authentication and key exchange in one protocol.
Unilateral and mutual authentication modes
Renegotiation and session resumption features.

The session key is used in the Handshake Protocol itself (so can’t prove usual
“indistinguishability of session keys” property).

RSA encryption used in TLS is not IND-CCA secure.
Cross-ciphersuite attacks.

Static DH harder to analyse then usual ephemeral DH because server acts as “fixed base
DH oracle” by calculating and using g* for fixed g, g*.

What to leave out and what to include when modelling the protocol?

Security Proofs for TLS Handshake Protocol

[MSWo8]J:
* Analysis of model of RSA-based key exchange in TLS
* Assumed RSA encryption to be CCA-secure.

[JKSS1a2]:

* ACCE security notion, combining security of Handshake and Record
Protocols.

* Overcomes “indistinguishability barrier” from use of session key in
Handshake Protocol.

* Analysis of cryptographic core of single mutually authenticated
ephemeral DH key exchange ciphersuites.

* Using a fairly faithful model of the core TLS Protocol.

Security Proofs for TLS Handshake Protocol

[KPW13]:
* Adapt ACCE to unilateral case.

* Analysis of cryptographic core of individual (unilateral and mutually
authenticated) RSA, static DH and ephemeral DH key exchange ciphersuites.

* Modular approach:
* Extract Key Encapsulation Mechanism (KEM) from Handshake Protocol.

* (S)ACCE security of TLS follows from constrained CCA security of this
KEM.

* Analyse the KEM for various ciphersuites.

[GKS13]:

* Formal security treatment of renegotiation and Ray-Dispensa-Rex attack.

Security Proofs for TLS Handshake Protocol

[BFKPS13, BFKPSZ14]:

Develop reference implementation of TLS in F#/F7: MITLS.

Complete implementation of basic Handshake Protocol, plus renegotiation, and
resumption.

Implementation of Record Protocol and Alert Protocol.

Encoding of security properties via typing, enabling formal verification of
security down to computational assumptions, using a type checker.

Some code modules idealised.

Interoperable and quite fast.

Used several elements to discover Triple Handshake, FREAK and LOGJAM
attacks.

TLS 1.3

Main objectives:

* Reduce latency (o-RTT key establishment).

* Protocol simplification (reducing options and removing
broken ciphersuites).

Two main Handshake Protocol options under consideration:

* Signed Diffie-Hellman.
* OPT-TLS (implicit DH).

Concluding Remarks

* TheTLS Handshake Protocol is extraordinarily complex.

Much more so than typical key exchange protocols appearing in the
literature.

Some of that complexity is necessary.
Some of it stems from a desire for flexibility.

All of it creates a challenge for analysis (and opportunities for finding
attacks).

The gap between theoretical analyses and real-world security is closing.

* Some design errors were made, but not many.

* Desire to support legacy features has been the source of problems.

* Lack of formal state-machine description, lack of API specification,
and sheer complexity of specifications have led to many serious
implementation errors.

